
1

PREDICTING RESOURCE DEMAND IN HETEROGENEOUS ACTIVE NETWORKS

V. Galtier, K. Mills, and Y. Carlinet
National Institute of Standards and Technology

S. Bush and A. Kulkarni

General Electric Corporate R&D

ABSTRACT

Recent research, such as the Active Virtual Network
Management Prediction (AVNMP) system, aims to use
simulation models running ahead of real time to predict
resource demand among network nodes. If accurate,
such predictions can be used to allocate network
capacity and to estimate quality of service. Future
deployment of active-network technology promises to
complicate prediction algorithms because each “active”
message can convey its own processing logic, which
introduces variable demand for processor (CPU) cycles.
This paper describes a means to augment AVNMP,
which predicts message load among active-network
nodes, with adaptive models that can predict the CPU
time required for each “active” message at any active-
network node. Typical CPU models cannot adapt to
heterogeneity among nodes. This paper shows
improvement in AVNMP performance when adaptive
CPU models replace more traditional non-adaptive
CPU models. Incorporating adaptive CPU models can
enable AVNMP to predict active-network resource usage
farther into the future, and lowers prediction overhead.

INTRODUCTION
Growing availability of processing power and bandwidth
in communication networks encourages innovative
approaches to network management. One specific
innovative idea envisions injecting simulation models
into network nodes, and then running those models in
parallel with the operational network, but ahead in time,
in order to predict traffic and resource use. If the models
predict accurately, then network management systems
can better allocate capacity in anticipation of varying
demands and network operators can better estimate the
quality of service (QoS) that customers can expect. This
paper describes one approach, the Active Virtual
Network Management Prediction (AVNMP) system [1],
which aims to predict network traffic. AVNMP uses
active-network technology [2] to inject simulation
models into network nodes, and to run those models
concurrently with corresponding applications. AVNMP
then compares estimated performance against measured

performance, and maintains predictions from the
simulation within specified error bounds, when
compared against measurements from the application.

AVNMP can estimate resource requirements for
each node in a conventional communication network,
such as the Internet. In conventional networks, accurate
estimates for message quantity and size directly imply
nodal resource requirements for bandwidth, memory,
and processor (CPU) cycles. This holds because packets
receive the same fundamental processing within each
node. Unfortunately, the future deployment of active
network technology promises to negate the simple, fixed
relationship between packets and resource use. This will
occur because each packet in an active network can carry
code, or a reference to code, which must be loaded on
demand and applied to the packet. This implies that in
active networks the processing of individual packets can
differ, demanding varying quantities of node resources,
particularly CPU cycles. We set out to investigate how
AVNMP might be used to predict resource consumption
in an active network. This paper reports our initial
findings.

The paper is organized into seven sections. First, we
provide a brief tutorial on active networks. Second, we
describe how AVNMP uses active-network technology
to predict traffic load in a conventional network. Third,
we discuss how we augmented AVNMP to predict CPU
usage in heterogeneous active networks. Here
heterogeneity implies that the active network comprises
a wide range of node types with various hardware
capabilities and software configurations. This creates
additional complexity because the demand for CPU
cycles varies not only by packet type but also by node
type. Fourth, we outline an experiment where we used
AVNMP to predict resource consumption by an active
audio application. Our results suggest that adaptive CPU
models [3], which accommodate variations in node
capabilities, can improve the accuracy of AVNMP
predictions, and reduce prediction overhead. Fifth, we
suggest some additional applications for AVNMP, and
similar prediction systems. Sixth, we identify some
future research suggested by our work. Finally, we
present our conclusions from the current experiment.

 2

ACTIVE NETWORKS
Active-network technology augments traditional
networking with the possibility that individual packets
carry executable code, or references to executable code.
Conventional packets are forwarded on the fast path of a
router, while active packets are delivered to a higher-
level execution environment that can identify and run
code associated with the packet. Networking
applications built with active packets are referred to as
active applications. Figure 1 illustrates the architecture
of an active-network node [4].

Underlying each active-network node is a node
operating system, which transforms the hardware into a
software abstraction to provide execution environments
with controlled access to resources such as CPU cycles,
memory, input and output channels, and timers. In order
to allow many possible operating systems to provide
services to many possible execution environments, the
active-network node architecture includes a standard
specification of system calls (the Node OS Interface
Layer in Figure 1) [5]. Execution environments, similar
to virtual machines, can be loaded onto an active node
using ANETD [6], a daemon that implements a load-
and-go protocol for execution environments. Each
execution environment accepts active packets that can
initiate the execution of packet-specific code. Each
related code base and flow of active packets is known as
an active application. In our experiment, we used the
Magician execution environment [7], implementing an
active audio application. AVNMP is also implemented
as an active application.

PREDICTING TRAFFIC LOAD
To predict traffic load in a network, AVNMP constructs
a shadow topology that overlays the operational network
and then runs a simulation in the shadow topology.

Figure 2 illustrates the relationship between the
operational network and the shadow, prediction-overlay
network. Using Magician, AVNMP deploys driving
processes (DP) at each source node and logical processes
(LP) at each intermediate and destination node in the
topology of the operational network. DPs and LPs are
deployed as active applications within an active virtual-
overlay network (space dimension in Figure 2). Each DP
contains a model that simulates message sources,
generating virtual messages that flow along links in the
virtual-overlay network, which share physical links
between nodes but remain logically isolated from
operational traffic. As virtual messages arrive, the LP
updates variables in the node’s management information
base (MIB) [8]. Each LP updates the future state of
relevant MIB variables, providing the MIB with
predicted state to complement the current and past state
maintained by the operational network. After updating
predicted MIB variables, the LP consults the node’s
routing table and forwards incoming virtual messages on
to other LPs, if required.

The prediction-overlay network then generates and
routes simulated network traffic that attempts to run
ahead in virtual time of operational network traffic (time
dimension in Figure 2). While the operational network
advances in real time, the LP in the prediction-overlay
network advances in virtual time, receiving virtual
messages and estimating future load. Periodically, the
LP compares the actual and predicted MIB values for
corresponding intervals in real and virtual time. If the
values agree within an error tolerance, then the
simulation remains ahead of real time and continues to
advance. If not, then the LP rolls virtual time back to the
current real time, discarding predictions for future MIB
state, and then simulation resumes. AVNMP contains
some special processing to cancel virtual messages that
might be in transit across the prediction overlay network
during a rollback, but we omit these details.

PREDICTING CPU USAGE
Once message load (in number and size) can be
predicted, then CPU usage for conventional networks
can be estimated. Since each node has a rating for per-

Node Hardware

Network Protocols
(Channels)

OS Scheduler &
Timer Services

(Threads)

OS Resource
Management

Services
(Flows, Thread Pools,

Memory Pools)

Network Device Drivers

• ••

EE1 EE2 EEn

Node Operating System Layer

Active
Application

Active
Application

Active
Application

Active
Application

Active
Application

Active
Application

Mapping of NodeOS API Layer to Real OS Services
S1 S2 S3 S4 SmNodeOS System Calls

• • •

Execution Environment Layer

NodeOS
Interface

Layer

Node Hardware

Network Protocols
(Channels)

OS Scheduler &
Timer Services

(Threads)

OS Resource
Management

Services
(Flows, Thread Pools,

Memory Pools)

Network Device Drivers

• ••• ••

EE1 EE2 EEn

Node Operating System Layer

Active
Application

Active
Application

Active
Application

Active
Application

Active
Application

Active
Application

Mapping of NodeOS API Layer to Real OS Services
S1 S2 S3 S4 SmNodeOS System Calls

• • •• • •

Execution Environment Layer

NodeOS
Interface

Layer

Figure 1. Architecture of an Active-Network Node
Time

L-3

L-2

L-4

AN-5

AN-4 Operational
Network

Prediction Overlay Network

L-1 L-3

L-2

L-4

AN-5AN-1

AN-4
DP

LP
LP

LP

L-1

AN-1

Space

Time

L-3

L-2

L-4

AN-5

AN-4 Operational
Network

Prediction Overlay Network

L-1 L-3

L-2

L-4

AN-5AN-1

AN-4
DP

LP
LP

LP

L-1

AN-1

Space

Figure 2. AVNMP as a Prediction Overlay Network

 3

message and per-byte throughput, a linear extrapolation
should provide reasonable estimates for CPU use.
Unfortunately, this simple approach cannot work for
active applications because individual packets can
require substantially different processing. Worse,
identical packets can require different CPU time on
various nodes. To enable AVNMP to predict CPU usage
in active networks, we decided to investigate adaptive
CPU modeling techniques as an alternative to the more
rigid approaches used by most active-network execution
environments to constrain CPU use by active packets.

Every execution environment employs some
approach to prevent erroneous or maliciously coded
active packets from consuming excessive CPU time on a
node or in the network. Some execution environments
assign a fixed resource limit to individual active packets;
some environments assign a maximum bound to any
active packet; some environments combine these
approaches. Such rigid techniques can cause significant
problems for active applications because the CPU time
needed to execute an active packet can vary from node-
to-node. Sometimes valid active packets can be
terminated too soon because they exhaust their CPU
limit. In other cases, erroneous or malicious active
packets can “steal” excessive CPU time because they are
permitted to execute for too long. Similarly, should
AVNMP use these fixed limits to estimate CPU time
usage for an active application, the estimates may be too
low or too high, depending on the capabilities of
individual network nodes.

These problems motivated us to investigate adaptive
models to represent the CPU use of active applications
in a form that can be scaled among heterogeneous nodes
[3]. We suspected that such adaptive models might
improve the ability of AVNMP to predict CPU usage in
heterogeneous active networks, while also reducing the
number of simulation rollbacks. To investigate these
hypotheses, we collaborated in an experiment, discussed
next.

AN EXPERIMENT AND RESULTS
As shown in Figure 3, we constructed a four-node,
heterogeneous active network, consisting of source (200
MHz Pentium1 Pro/64 Mbytes) and destination nodes
(450 MHz Pentium II/128 Mbytes) separated by two
intermediate nodes: one faster (333 MHz Pentium II/128
Mbytes) and one slower (100 MHz Pentium/64 Mbytes).
All nodes included Magician running on a Java™ virtual
machine (jdk 1.2.2) supported by Linux (release 2.2.7).

1 Commercial products are identified in this report to describe our study
adequately. Such identification does not imply recommendation or
endorsement by the National Institute of Standards and Technology.

The operational active network comprised these nodes
connected to a switched 10-Mbps Ethernet, which
included a few other nodes that were not part of the
experiment. We configured the experiment nodes to run
an active audio application. The prediction overlay
network included AVNMP deployed as an active
application on each node, with a DP injected into the
source node and an LP injected into the destination and
each intermediate node. The DP included a message
model to generate virtual message traffic and a CPU
model to simulate processor use associated with each
virtual message. Each LP included a CPU model to
simulate processor use for each arriving virtual message.

We conducted two experiment runs. In the first run
the DP and LPs predict a fixed CPU time for each virtual
message on every node. In the second run, the average
CPU time predicted for each virtual message differs on
each node. Table 1 shows the relevant experiment
parameters at each node.

Table 1. Relevant Experiment Parameters for Each Node

We assigned 7 ms per packet for the fixed CPU time

model. This figure was obtained by measuring the active
audio application executing on the source node. Note
that 7 ms equates to a different number of clock cycles
on each node, depending on processor speed. To obtain
variable predictions for the adaptive CPU time model,

AVNMP AA

Source
Node

Fastest
Intermediate

Node

Destination
Node

Slowest
Intermediate

Node

Active Audio
CPU Model Magician AAs

500000 1 106 1.5 106 2 106 2.5 106 3 106
Wallclock mS

50

100

150

200

Prediction Error Accuracy

Logical

Process
Active
Audio

AA

Magician EE
MIB

AVNMP LPs predict
number of messages
and CPU use and
update predicted
MIB values on nodes

Magician EEs
update actual
MIB values for
CPU use and
number of
messages

Active Audio CPU usage
model injected into AVNMP
LP on each node

Logical

Process

CPU
Model

Driver

Process

Message
Model

CPU
Model

Active
Audio

AA

AVNMP LPs determine
prediction error, compare
against tolerance, initiate
rollbacks, and display graphs

Virtual
Messages

Real Messages

AVNMP AA

Source
Node

Fastest
Intermediate

Node

Destination
Node

Slowest
Intermediate

Node

Active Audio
CPU Model Magician AAs

500000 1 106 1.5 106 2 106 2.5 106 3 106
Wallclock mS

50

100

150

200

Prediction Error Accuracy

500000 1 106 1.5 106 2 106 2.5 106 3 106
Wallclock mS

50

100

150

200

Prediction Error Accuracy

Logical

Process
Active
Audio

AA

Active
Audio

AA

Magician EE
MIB

AVNMP LPs predict
number of messages
and CPU use and
update predicted
MIB values on nodes

Magician EEs
update actual
MIB values for
CPU use and
number of
messages

Active Audio CPU usage
model injected into AVNMP
LP on each node

Logical

Process

CPU
Model

Logical

Process

CPU
Model

Driver

Process

Message
Model

Driver

Process

Message
Model

CPU
Model

Active
Audio

AA

Active
Audio

AA

AVNMP LPs determine
prediction error, compare
against tolerance, initiate
rollbacks, and display graphs

Virtual
Messages

Real Messages

Figure 3. Experiment Configuration

163,34790,00069,300234,075
Error Tolerance (+-10 %)

(clock cycles)

710.112.18.8
Avg. Measurement

Interval (s)

16.5
1,633,478

3
900,000

7
693,000

7
2,340,750

Avg. CPU Time (ms)
(clock cycles)

Adaptive CPU Time ModelFixed CPU Time Model

Slowest
Intermediate

Node

Fastest
Intermediate

Node

Slowest
Intermediate

Node

Fastest
Intermediate

Node

Experiment
Parameter

163,34790,00069,300234,075
Error Tolerance (+-10 %)

(clock cycles)

710.112.18.8
Avg. Measurement

Interval (s)

16.5
1,633,478

3
900,000

7
693,000

7
2,340,750

Avg. CPU Time (ms)
(clock cycles)

Adaptive CPU Time ModelFixed CPU Time Model

Slowest
Intermediate

Node

Fastest
Intermediate

Node

Slowest
Intermediate

Node

Fastest
Intermediate

Node

Experiment
Parameter

 4

we simulate that each virtual message consumes CPU
time chosen from a statistical distribution, as determined
by analyzing an execution trace generated when the
active audio application runs on the source node. Each
time an application returns from a system call, the
execution trace records an event. Each event identifies
the previous and current system call, and includes the
amount of CPU time used in the current call, as well as
the CPU time used in the execution environment
between the two calls. Elsewhere, we explain how this
execution trace can be used to model CPU-time use as a
function of application behavior, specifically transitions
between system calls and the execution environment [3].

 To adapt the variable time model to account for
node differences, we calibrate [9] the ability of each
node to execute system calls and an active-application
benchmark within Magician. Further, we select the
source node as a reference, and distribute its calibration
results to all nodes. Since the variable-time CPU model
is a function of the interactions between system calls and
execution environment, a straightforward algorithm can
transform the CPU model from local to reference form,
based on the relative calibration performance of the local
and reference nodes. After sending this application
model to another node, the transformation can be simply
inverted. As a result, the CPU model generated on the
source node can be transformed into terms understood
on any network node. Using this approach, the adaptive
CPU time model predicts that each active audio packet
will take 3 ms on the fastest intermediate node and 16.5
ms on the slowest intermediate node. Our hypothesis:
because an adaptive model more accurately represents
CPU use in an application, as compared against a fixed-
time model, AVNMP should require fewer tolerance
rollbacks; thus, the prediction-overlay network should
provide better look-ahead into virtual time.

For both experiment runs we fixed the relative error
tolerance at 10 %, which means that AVNMP initiates
tolerance rollbacks whenever the measured CPU use
(averaged over 20 messages) differs from the predicted
CPU use by more than 10 %. This tolerance, computed
relative to predicted CPU use, equates to a different
number of clock cycles for each node and run. Using a
wider error tolerance would likely mask any
improvements from the adaptive CPU time model.

In conducting each run, the audio application
emitted a stream of 91,105 bytes, and the intermediate
nodes periodically measured the cumulative tolerance
rollbacks and the virtual time. As shown in Table 1, the
average measurement interval varied on each node due
to the stochastic nature of thread scheduling in Java.
Table 2 compares the results we obtained from our
experiment runs.

Over the audio streaming period, we can compare
AVNMP performance for the same nodes when using
the fixed CPU-time model vs. the adaptive CPU-time
model. For both the fastest and slowest intermediate
node, the adaptive CPU-time model induces fewer
tolerance rollbacks. This permits AVNMP to reach a
greater maximum look ahead into virtual time on each
intermediate node. These results support our hypothesis,
suggesting that use of an adaptive CPU-time model can
improve the ability of AVNMP to predict resource usage
in heterogeneous active networks.

Table 2. Comparing AVNMP Performance
with Fixed vs. Adaptive CPU-Time Models

APPLICATIONS
This paper describes two complementary innovations:
(1) the use of active-network technology to deploy a
shadow, prediction-overlay network that can estimate the
future state of an operational network and (2) the use of
application-level CPU-time models that can adapt to
account for varying capabilities among heterogeneous
network nodes. While complementary, the fundamental
innovations can be applied independently to address
existing and future needs within distributed systems.

In the case of AVNMP, effective prediction of future
network state can enable network managers to adapt
network configurations in response to traffic overloads
before the overloads actually occur. In addition,
predicting resource demands at a node can enable the
operating system to better schedule node resources and
to provide better admission control decisions. Further,
predicting resource use along network paths can help
network management systems to estimate the quality of
service available to distributed applications. In fact, one
can envision the use of such predictive capabilities to
respond to application queries seeking a network path
that guarantees a specified quality of service.

In the case of adaptive CPU-time models, one can
imagine improvements in the safety and efficiency of
Internet applications, which increasingly use mobile
code, such as applets, scripts, and dynamically linked
libraries, to deliver new software to millions of users.
Without understanding the CPU time required by
dynamically downloaded software, computer operating
systems cannot effectively manage system resources or
control the execution of mobile code. Unfortunately,
since mobile code can be downloaded and executed on a

20674793Tolerance Rollbacks

284370265Maximum Look Ahead (s)

Adaptive CPU Time ModelFixed CPU Time Model

Slowest
Intermediate

Node

Fastest
Intermediate

Node

Slowest
Intermediate

Node

Fastest
Intermediate

Node
Metric

20674793Tolerance Rollbacks

284370265Maximum Look Ahead (s)

Adaptive CPU Time ModelFixed CPU Time Model

Slowest
Intermediate

Node

Fastest
Intermediate

Node

Slowest
Intermediate

Node

Fastest
Intermediate

Node
Metric

 5

wide variety of computer systems with a vast range of
configurations and capabilities, software developers
cannot specify CPU requirements a priori.

FUTURE RESEARCH
While our adaptive CPU-time models appear promising,
more research remains before the models can be
practically applied. Three issues in particular must be
resolved. First, our existing models assume that all
application behavior can be measured prior to injecting a
model into network nodes. Unfortunately, application
behaviors often reflect conditions that cannot be known
before a program reaches a node. For this reason, our
application model must be enhanced to account for such
node-dependent conditions. Second, our models consist
of fine-grained histograms, which must be exercised
with Monte Carlo simulations in order to predict CPU
use. As a result, specific application models can be large
and can require substantial computation to produce
predictions. To some degree the space-time properties of
our model can be modulated; however, the prediction
error also varies accordingly. The third issue to be
resolved involves error characterization. Before taking
decisions based on predictions from CPU-time models,
an operating system must consider the possible range of
prediction error. We have yet to characterize the error
properties of our models. The ability of AVNMP to
maintain predictions within a specified error bounds
offsets this weakness in the application discussed in this
paper.

With regard to AVNMP, we demonstrated the
ability to make predictions of message load and CPU
usage in a rather small network. We have yet to
investigate how shadow simulations might be scaled to
larger networks with thousands of MIB variables at each
node. Our current system emulates real applications
running in a logically isolated prediction-overlay
network, which shares physical resources with the
operational network. This approach will at minimum
double the physical resources required from the
operational network. We might be able to discover more
efficient techniques to simulate future state. Such
efficiency improvements, which are being explored in
light of recent advances in the application of
Kolmogorov complexity theory [10], could prove crucial
when we attempt to simultaneously predict alternative
future network states. If we can achieve this goal, then
AVNMP might be used to estimate multiple future states
in a network, perhaps even assigning a probability to
each state. Given such capability, a network manager
could simultaneously explore multiple “what-if”
scenarios and could initiate network reconfigurations

based on the most likely or most critical expected
outcomes.

CONCLUSIONS
In this paper, we described AVNMP, a system that uses
active-network technology to deploy and manage a
distributed simulation running in a virtual, prediction-
overlay network. AVNMP can be used to predict the
future state of network nodes and to maintain those
predictions within specified error bounds. Specifically,
we showed that AVNMP could predict both message
load and CPU usage for a streaming-audio application
running in an active network. Further, our experiment
results suggest that in a heterogeneous active network
the predictive performance of AVNMP, along with
associated overhead, varies depending on the nature of
the simulation models injected into the prediction-
overlay network. When we injected an adaptive CPU-
time usage model for the active audio application, the
number of tolerance rollbacks decreased and predictive
performance of AVNMP over that obtained using fixed
CPU-time models.

REFERENCES
[1] S. F. Bush and A. B. Kulkarni, Active Networks and Active

Virtual Network Management Prediction: A Proactive
Management Framework. ISBN 0-306-46560-4. Kluwer
Academic / Plenum Publishers, (in press).

[2] D. L. Tennenhouse, J. M Smith, W. D. Sincoskie, D. J. Wetherall,
and G. J. Minden, "A survey of active networks research," IEEE
Communications Magazine, 35(1) 1, pp. 80-86, 1997.

[3] V. Galtier, K. L. Mills, Y. Carlinet, S. D. Leigh, and A. Rukhin,
"Expressing Meaningful Processing Requirements among
Heterogeneous Nodes in an Active Network,” Proceedings
Second International Workshop on Software and Performance,
pp. 20-28, September 2000.

[4] K. L. Calvert (ed), Architectural Framework for Active Networks,
Version 1.0, Draft, July 27, 1999.

[5] L. Peterson (ed.), NodeOS Interface Specification, January 24,
2000.

[6] S. Dawson, M. Molteni, L. Ricculli, and S. Tsui, User Guide to
ANETD 1.6.3, Sept. 28, 2000.

[7] A.B. Kulkarni, G. J. Minden, R. Hill, Y. Wijata, S. Sheth, H.
Pindi, F. Wahhab, A. Gopinath, and A. Nagarajan,
"Implementation of a Prototype Active Network," Proceedings
OPENARCH ’98, 1998.

[8] M. T. Rose, The Simple Book: An Introduction to the
Management of TCP/IP Based Internets, Prentice-Hall, 1991.

[9] Y. Carlinet, V. Galtier, K. Mills, S. Leigh, and A. Ruhkin,
“Calibrating an Active Network Node," Proceedings of the 2nd
International Workshop on Active Middleware Services, pp. 115-
125, August 2000.

[10] A. B. Kulkarni and S. F. Bush, “Active Network Management,
Kolmogorov Complexity, and Streptichrons,” GE-CRD
Technical Report, 2000CRD17.

The work discussed in this paper was funded in part by DARPA,
under the auspices of the Active Networks program. Our thanks go to
Doug Maughan, the Active Networks program manager.

